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Abstract: Using the tachyon DBI action proposal for the effective theory of non-

coincident Dp-brane-anti-Dp-brane system, we study the decay of this system in the tachyon

channel. We assume that the branes separation is held fixed, i.e., no throat formation, and

then find the bounce solution which describe the decay of the system from false to the true

vacuum of the tachyon potential. We shall show that due to the non-standard form of the

kinetic term in the effective action, the thin wall approximation for calculating the bubble

nucleation rate gives a result which is independent of the branes separation. This unusual

result might indicate that the true decay of this metastable system should be via a solution

that represents a throat formation as well as the tachyon tunneling.
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1. Introduction

It was shown by Coleman [1] that in a scalar field theory with potential V (φ) which has

both false vacuum, φf , and true vacuum, φt (see fig.1), and with standard kinetic term,

i.e.,

S = −
∫

dp+1x

(

1

2
(∂aφ)2 + V (φ)

)

, (1.1)

where a is a world volume index, there is always a vacuum tunneling from the false vacuum

to the true vacuum. The false vacuum decays via a quantum mechanical tunneling process

that leads to the nucleation of bubbles of true vacuum. The semiclassical calculation of

the bubble nucleation rate per unit volume, Γ, is given by [1]

Γ ∼ e−B , (1.2)

where B is obtained from the action of the bounce solution to the Euclideanized field equa-

tions. The ”overshoot” argument of Coleman [1] guarantees the existence of the bounce

solution. This argument is the following: Consider the equation of motion of the Eu-

clideanized action for maximal symmetric solution and for p > 0

φ̈ +
p

r
φ̇ = V ′ . (1.3)

This equation is like the equation of motion of a particle in the potential −V with the

time dependent kinetic friction term pφ̇/r (see fig.1). The bounce solution is a solution

of the above equation that starts with the initial condition φ̇(0) = 0 and φ(0) = φ0, and

approaches φ(∞) = φf with zero velocity. Around the maximum of −V one can safely

write V ′(φ) ∼ µ2(φ−φt), where µ2 = V ′′(φt) > 0, hence the above equation can be written

in the linear form

φ̈ +
p

r
φ̇ = µ2(φ − φt) . (1.4)
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Figure 1: A potential V (φ) which has two non-degenerate vacuum φf and φt with V (φt) < V (φf ),

and potential −V (φ) which appears in the equation of motion of the euclideanized action.

In terms of new variable (φ − φt) = r(1−p)/2ψ, this equation converts to Bessel equa-

tion

ψ̈ +
1

r
ψ̇ −

(

µ2 +
(1 − p)2

4r2

)

ψ = 0 , (1.5)

whose solution is Bessel function ψ(r) = I(p−1)/2(µr). Hence the solution of φ is

φ(r) − φt = Γ

(

p + 1

2

)

(φ(0) − φt)I(p−1)/2(µr)

(

2

µr

)(p−1)/2

. (1.6)

If initially φ is very close to φt, it will stay there for long time. After that time it rolls

with negligible friction term and with finite velocity down the potential −V toward the

vacuum φf which is at lower energy. Hence, there is always an ”overshoot” point for

any potential with both false and true vacuum. An approximated bounce solution (the

thin-wall approximation) can be found for any potential [1]. In this approximation, the

particle stays at true vacuum for a fixed period of time. Then it moves quickly with-

out friction through the valley of the potential −V , and slowly comes to rest at false

vacuum at time infinity. The form of this solution depends on details of the potential

V .

A physical system in string theory that should be described effectively by a field theory

that has potential with both false and true vacuums, is the non-coincident D-brane-anti-

D-brane system [2]. Apart from the complex tachyon which is a scalar field that has a

potential with both false and true vacuums, the world-volume of this metastable system

has massless transverse scalar fields as well. It has been pointed out in [21] that the

true decay channel for this system is the following: the branes attract each other by long

range gravitational forces, and then they annihilate each other via a direct appearance of

tachyon instability. However, when branes separation is much larger than the string length

scale, this system may decay in another way: through the tunnel effect by creation of a

throat between the branes [21]. Assuming that the tachyon is frozen at the false vacuum,

the authors have found a throat solution to the Euclideanized equation of motion of the
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massless scalar fields. The decay rate for nucleating this throat between the two branes

was found to be given by

Bscalar = Tp∆
p+1

√
π

Γ
(

p+3
2

)

(

pΓ(1 − 1/2p)

Γ(1/2 − 1/2p)

)p

, (1.7)

where ∆ is the branes separation. This result truly indicates that as the branes separation

goes to infinity the decay rate (1.2) goes to zero. It has been noted in [21] that if the

branes are free to move in the space, the time scale of the gravitational approach for the

decay is much smaller than that of the decay via the throat formation. However, there are

situations where the latter time scale is dominate [6].

Having a scalar field in the effective action of DD̄ which has both false and true

vacuums, i.e., the tachyon field, it is natural to ask what happens to this system when

tachyon tunnels from the false vacuum to the true vacuum. We are then interested in the

bounce solution of the Euclieanized equation of motion of the tachyon field. In the first step,

however, we assume that the branes are frozen at specific position in the transverse space,

i.e., no throat formation, and consider only the tachyon as dynamical field. This bounce

solution has been studied in [6] using two-derivative truncation of the BSFT effective

action. In the present paper, however, we use the tachyon DBI action, proposed in [14, 5]

for describing effectively the non-coincident brane-anti-brane system, to study this bounce

solution. We shall find that in the thin-wall approximation, the decay rate for nucleating

the bubble is given by

Btachyon = Tp(`c)
p+1

√
π

Γ
(

p+3
2

) (
√

πp/2)p (1.8)

where `c =
√

2π2α′. Unlike the result in (1.7), the above is independent of the branes

separation! We interpret this unusual result as a sign that the assumption that there is no

throat formation between the two branes is not a valid assumption. In other words, the

true decay of the metastable DD̄ system should be via a solution of the coupled equation

of motion of massless scalar and tachyon which represents both tachyon bounce and scalar

throat formation.

In the next section, we review the construction of the tachyon DBI action proposed

in [14, 5] for the effective theory of non-coincident DpD̄p system. In section 3, using the

assumption that the branes separation is constant, we study the bounce solution of the

tachyon equation and calculate the bubble nucleation rate for large brane separation.

A tachyon DBI field theory has also been used to study the vacuum tunneling from

false to the true vacuum [3]. The physical process studied in [3] is nucleation of spherical

D-branes in the presence of an external RR electric field [4]. Using the description of D-

branes as solitons of the tachyon field on non-BPS D-branes, they calculated the rate of

spherical D-branes nucleation as the tachyon tunneling from false to the true vacuum and

find exact agreement with the result in [4].
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2. Review of construction of DpD̄p effective action

In this section we review the construction of the effective action of fixed Dp-brane-anti-Dp-

brane proposed in [5]. Consider the effective action of one fixed non-BPS Dp-brane in type

IIA(IIB) theory in flat background[7 – 10]:

S = −
∫

dp+1xV (T )
√

− det(ηab + α′∂aT∂bT ) , (2.1)

where V (T ) = Tp(1−T 2/4+O(T 4)) is the tachyon potential. A potential which is consistent

with S-matrix element calculation up to T 4 term is V (T ) = Tp e−T 2/4 [11]. This potential

appears also in the BSFT tachyon effective action [12].

The kink solution of tachyon should be the BPS Dp−1-brane of type IIA(IIB) [13].

The tension of the kink is given by Tp−1 =
√

α′ ∫ T0

−T0
V (T )dT where T0 is the value of

the tachyon potential at its minimum. There are many different tachyon potentials which

correctly reproduce the tension of the BPS brane [14, 15], i.e., Tp−1 = π
√

2α′Tp. One

example is the following potential [16, 17]:

V (T ) =
Tp

cosh(T/
√

2)
. (2.2)

This has minimum at T → ±∞ and behaves as V (T ) ∼ e−T/
√

2 at T → ∞. This potential

is also consistent with the fact that there is no open string state at the end of the tachyon

condensation [18].

The effective action of N non-BPS D-branes should be the non-abelian extension of

the effective action of one non-BPS D-brane [8]. For two fixed non-BPS D-branes and for

trivial background, the effective action is [8]

S = −
∫

dp+1xTr
(

V (T )
√

det(Q)
√

− det (ηab + Tab)
)

, (2.3)

where the matrix Tab is

Tab = α′∂aT∂bT +
1

2π
∂aT [Xi, T ](Q−1)ij [X

j , T ]∂bT ,

and matrix Qi
j is

Qi
j = Iδi

j −
i

2πα′ [X
i,Xk]ηkj −

1

(2π)2α′ [X
i, T ][Xk, T ]ηkj . (2.4)

The trace in the action (2.3) should be completely symmetric between all non-abelian

expressions of the form [Xi,Xj ], ∂aT, [Xi, T ], and individual T of the tachyon potential.

The matrices Xi and T are

Xi =

(

X(11)i X(12)i

X(21)i X(22)i

)

, T =

(

T (11) T (12)

T (21) T (22)

)

, (2.5)

where superscripts (11), (12), (21), (22) refer to the ends of open strings, e.g., (12) means

the open string with one end on brane 1 and the other end on brane 2.
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Now, type IIA(IIB) converts to type IIB(IIA) under orbifolding by (−1)F
S

L . In par-

ticular, a non-BPS Dp-brane of IIA(IIB) converts to BPS Dp-brane or anti-Dp-brane of

IIB(IIA) theory [19]. Hence, two non-BPS Dp-branes of IIA(IIB) may convert to Dp-brane-

anti-Dp-brane of IIB(IIA). This orbifolding converts the matrices (2.5) to the following:

Xi =

(

X(1)i 0

0 X(2)i

)

, T =

(

0 τ

τ∗ 0

)

. (2.6)

where we have changed the notation here, i.e., the superscripts (1) and (2) refer to the

open string fields with both ends on brane 1 and 2, respectively, and τ(τ∗) refers to the

tachyon with one end on brane 1(2) and the other end on brane 2(1). The above matrices

satisfy the following relations:

[Xi,Xj ] = 0, [Xi, T ] = `i

(

0 τ

−τ∗ 0

)

,

where `i = X(1)i − X(2)i is the field that represents the distance between the two branes.

We have assumed, however, that this field is constant. The matrix Qi
j simplifies to

Qi
j = I

(

δi
j +

|τ |2
(2π)2α′ `

i`j

)

.

The inverse of this matrix is

(Q−1)ij = I

(

δi
j −

|τ |2
(2π)2α′ det(Q)

`i`j

)

, (2.7)

where

det(Q) = I

(

1 +
|τ |2`2

(2π)2α′

)

. (2.8)

The matrix Tab simplifies to

Tab =
α′

det(Q)
(∂aT∂bT ) =

α′

det(Q)

(

∂aτ∂bτ
∗ 0

0 ∂aτ
∗∂bτ

)

. (2.9)

Note that this matrix is not a real matrix, however, one expects to have a real action after

implementing the trace prescription.

Inserting the expressions (2.8) and (2.9) into (2.3), and performing the symmetric

trace, one finds the following effective action for non-coincident DpD̄p system of IIB(IIA)

theory:

S = −2

∫

dp+1xV(|τ |, `)





√

√

√

√− det(ηab +
α′/2

1 + |τ |2`2

(2π)2α′

(∂aτ∂bτ∗ + ∂aτ∗∂bτ)



 , (2.10)

where the tachyon potential is

V(|τ |, `) = V (|τ |)
√

1 +
|τ |2`2

(2π)2α′ , (2.11)
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Figure 2: The DpD̄p potential V(φ, `) for brane separation ` > `c in terms of φ.

where V (|τ |) is the tachyon potential of the original non-BPS Dp-brane of IIA(IIB) theory,

e.g., (2.2). Note that V(|τ |, ` = 0) = V (|τ |). See [20], for other proposal for the effective

potential of non-coincident DpD̄p system. For ` > `c where `c ≡
√

2π2α′, the above

potential has a barrier, see fig.2. Having two non-degenerate minima for the potential, one

may expect that the DpD̄p system makes a bubble formation by tachyon tunneling through

the barrier. In the next section we will study this tunneling.

3. Bounce solution of DpD̄p system

The tachyon potential depends only on the amplitude of the complex tachyon, hence , the

phase of this field can be held fixed. Writing the complex tachyon as τ = φeiθ, the action

(2.10) for fixed θ becomes

S = −2

∫

dp+1xV(φ, `)

√

√

√

√

√− det



ηab +
α′

1 + φ2`2

(2π)2α′

∂aφ∂bφ



 ,

This action can be rewritten as

S = −Tp−1√
α′

∫

dp+1xU(φ)

√

1 +
φ2`2

(2π)2α′ + α′∂aφ∂aφ ,

where we have rescaled the tachyon potential by 2
√

α′/Tp−1 and Tp−1 is the tension of the

BPS Dp−1-brane of type IIA(IIB), i.e., U(φ) = 2
√

α′V (φ)/Tp−1. The tachyon potential is

now dimensionless.
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Figure 3: The potential −Z(Φ, `) for a) `2 = 2`2

c and for b) `2 = 30`2

c. The maximum and

minimum of the potential is independent of `, however, the valley of the potential increases as `

increases.

The Euclidean action is

SE =
Tp−1√

α′

∫

dp+1xU(φ)

√

1 +
φ2`2

(2π)2α′ + α′∂aφ∂aφ . (3.1)

The tachyon potential V has local minimum at φ = 0 and global minima at φ = ±∞. Since

the true vacuums are at infinity, it is convenient to define a new field as

Φ =

∫ φ

0
U(φ′)dφ′ . (3.2)

In terms of this new field, the false vacuum is at Φ = 0 and the true vacuums are at

Φ = ±1. The value of the dimensionless tachyon potential, Z = 2
√

α′V/Tp−1, at false

vacuum is Z(0, `) =
√

2/π, and at the true vacuums is Z(±1, `) = 0.

For the potential (2.2), the relation between φ and Φ is eφ/
√

2 = tan(π(1 + Φ)/4), and

the tachyon potential Z is

Z(Φ, `) = U(Φ)

√

1 +
`2

(2π)2α′φ
2(Φ) (3.3)

=

√
2

π
cos

(π

2
Φ

)

√

1 +
`2

2π2α′

[

ln
(

tan
(π

4
(1 + Φ)

))]2
.

In fig.3, −Z(Φ, `) is plotted for different values of the brane separation `.

We are interested in studying the tunneling from the local minimum Φ = 0 to the

global minimum Φ = −1 of the potential Z. In terms of the new field (3.2), the action

(3.1) becomes

SE =
Tp−1√

α′

∫

dp+1x
√

Z2(Φ, `) + α′∂aΦ∂aΦ .
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Following [1], one has to find a solution with maximal symmetry, i.e., Φ = Φ(r) where

r2 = xax
a, and with the boundary conditions Φ̇(0) = 0 and Φ(∞) = Φ̇(∞) = 0. For such

a solution the above action becomes

SE =
Tp−1√

α′ ApIE , (3.4)

where Ap is the area of the p-sphere with radius 1, i.e., Ap = 2π(p+1)/2/Γ(1/2 + p/2), and

the effective one-dimensional action is

IE =

∫ ∞

0
drL

=

∫ ∞

0
dr rp

√

Z2 + α′Φ̇2 . (3.5)

The Euler Lagrange equation of motion is

α′Φ̈Z2

(Z2 + α′Φ̇2)3/2
+

p

r

α′Φ̇
√

Z2 + α′Φ̇2
=

ZZ ′
√

Z2 + α′Φ̇2

(

1 +
α′Φ̇2

Z2 + α′Φ̇2

)

. (3.6)

The second term on the left hand side represents friction term which decreases as time

progresses. It is easier to work in the Hamiltonian formulation to study this nonlinear

system. The equations of motion in the Hamiltonian formulation are

Π̇ = Z ′√1 − Π2/α′ − p

r
Π ,

Φ̇ =
ZΠ/α′

√

1 − Π2/α′ . (3.7)

where Π is related to the conjugate momentum of the field Φ as

Π =
α′Φ̇

√

Z2 + α′Φ̇2
. (3.8)

Note that Π is bounded between −
√

α′ and
√

α′. The bounce solution is a solution of the

above equations (3.7) with boundary conditions Π(0) = 0 and Φ(∞) = Π(∞) = 0.

Because of the friction term for p > 0, system is not conservative. It is still useful to

consider the energy:

E ≡ 1

rp
H =

1

rp

(

Φ̇
∂L
∂Φ̇

− L
)

= −Z
√

1 − Π2/α′ . (3.9)

Using (3.7), one can easily show that the lost of energy is

Ė = − p

α′r
ZΠ2

√

1 − Π2/α′ = −F Φ̇ , (3.10)

where F = pΠ/r is the friction.
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We now show that there is an ”overshoot” point for any brane separation. To see

this, one has to study the behavior of the system near the true vacuum. Around the true

vacuum, Z ∼ 0, the equations (3.7) are decoupled, i.e.,

Π̇ = Z ′√1 − Π2/α′ − p

r
Π ,

Φ̇ ∼ 0 , (3.11)

where Z ′ is a very large number near the true vacuum.

We first consider p = 0. In this case, the above equations have the following analytic

solution:

Π(r) =
√

α′ sin(Z ′r/
√

α′) ; Φ(r) ∼ −1 , for r <
π
√

α′

2Z ′

Π(r) =
√

α′ ; Φ(r) ∼ −1 , for r ≥ π
√

α′

2Z ′ . (3.12)

At the time R/
√

α′ = π/(2Z ′), Π reaches to its maximum value and stays there forever.

In this case, conservation of energy guarantees the existence of the bounce solution, and

the above result indicates that the initial value Φ(0) = Φ0 of the bounce solution is larger

than −1. One can find Φ0 by using the conservation of energy, i.e., Z(Φ0) = Z(Φ = 0), or,

in terms of old field,

U(φ0)

√

1 +
`2

(2π)2α′φ
2
0 = U(0) . (3.13)

The coefficient B for the bounce solution is

B =
T−1√

α′

(∫ ∞

0
dr

√

Z2 + α′Φ̇2 −
∫ ∞

0
drU(0)

)

= T−1

∫ 0

φ0

√

U2(φ)
(

1 + `2

(2π)2α′
φ2

)

− U2(0)

√

1 + `2

(2π)2α′
φ2

dφ , (3.14)

where we have used conservation of energy to write Φ̇ in terms of energy and tachyon

potential. Note that, for large `, the integral is independent of the brane separation, i.e.,

B ∼ T−1

∫ 0
−1 dΦ = T−1 = `cT0. We will show in the next section that this property is hold

even for p > 0 cases.

For p > 0 cases, the qualitative form of the solution of equations (3.11) is the same as

(3.12). However, because of the friction term pΠ/r in (3.11), Π reaches to its maximum

value in a bit longer than R/
√

α′ = π/(2Z ′). Then particle stays there for arbitrary long

period of time by fine tuning the initial value of Φ, i.e., the closer Φ to −1, the longer

particle stays around Φ = −1. After staying for arbitrary period of time at Φ ∼ −1,

particle moves off this point with negligible friction toward the false vacuum. Therefore,

there is an ”overshoot” point for any brane separation. In the next subsection we use the

thin-wall approximation [1] to find the bounce solution for large brane separation.

– 9 –
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3.1 The thin-wall approximation

We now find the bounce solution and calculate the coefficient B for large brane separation,

and for p > 0. The qualitative form of the bounce solution for large ` is the following: In

order not to lose too much energy due to the friction, we must choose the initial position

of the particle very close to −1. The particle then stays close to −1 until some very large

time, r = R. Near time R, the particle moves quickly through the valley of the potential

−Z, and slowly comes to rest at Φ = 0 at time infinity, i.e.,

Φ = −1 , r ¿ R

= Φ1(r − R) , r ' R

= 0 , r À R , (3.15)

where Φ1(r−R) is the solution that starts at Φ = −1 with negligible friction term and ends

at Φ = 0. Since the friction is neglected for this part, we can use conservation of energy to

find this solution. Using the facts that energy is E = −Z
√

1 − Π2/α′ and Z(−1) = 0, one

observes that Π =
√

α′ during this period. From equation (3.8), one realizes that velocity

of the particle should be infinite, i.e., Φ̇1 = δ(r − R). The only thing missing from this

description is the value of R which can be obtained by variational computation:

B =
Tp−1√

α′ Ap

(∫ ∞

0
drrp

√

Z2 + α′Φ̇2 −
∫ ∞

0
drrpZ(0)

)

=
Tp−1√

α′ Ap

(
∫ R

0
drrp(Z(−1) −Z(0)) + α′Rp

∫ 0

−1

dΦ

Π

)

(3.16)

=
Tp−1√

α′ Ap

(

− ε

p + 1
Rp+1 +

√
α′Rp

)

where ε = Z(0) −Z(−1) =
√

2/π. Varying with respect to R, one obtains

dB

dR
= 0 =⇒ R0 =

p

ε

√
α′ =

p

2
`c . (3.17)

Thus the radius of the nucleated bubble is independent of the brane separation for large

`. This is unlike the result in [6] that uses two-derivative truncation of the tachyon action.

We note that the energy lost for the solution (3.15) is exactly equal to the difference energy

between true and false vacuum, i.e.,

∆E =

∫ ∞

0
dr F Φ̇ =

p
√

α′

R0
= ε (3.18)

where we have replaced the radius of nucleated bubble from (3.17).

The condition for validity of the thin-wall approximation is [1]

µ

(

R0√
α′

)

>> 1 (3.19)

where µ is the scale parameter of the theory. To find this parameter, we need to study the

behaviour of the potential around its maximum, i.e.,

Z − Ztop =
1

2
µ(δΦ)2 + · · · (3.20)
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`

R0

`

(a) (b)

Figure 4: The time evolution of D2-D̄2 system for condensation of tachyon into bounce solution.

(a) Before decay. (b) After decay.

The dimensionless potential around the top of the hill is

Z − Ztop ∼ 1

2

∂2Z
∂φ2

(δφ)2

=
1

2U2

∂2Z
∂φ2

(δΦ)2 . (3.21)

For tachyon potential U = (
√

2/π)e−φ2/4, and for large brane separation, i.e., ` >>
√

α′,
the maximum of the DD̄ potential Z is at φ ∼

√
2. For this case one finds

µ =
1

U2

∂2Z
∂φ2

|φ=
√

2 ∼
(√

e

2

)

`√
α′ . (3.22)

For other tachyon potential, the numerical factor above changes. Therefore,

µ

(

R0√
α′

)

∼ pπ

2

√

e

2

`√
α′ , (3.23)

for large brane separation, the condition (3.19) is satisfied which means our thin-wall

approximated solution (3.15) is valid. Note that, for the minimum value of the branes

separation where there are false and true vacuums, i.e., ` = `c, the right hand side is

pπ2√e/2 ∼ 8p which is larger than one.

Finally, the decay width in the thin-wall approximation becomes

B = 2TpAp

(

− 1

p + 1
Rp+1

0 +
1

p
Rp+1

0

)

=
2TpAp

p(p + 1)
Rp+1

0 (3.24)

which is independent of brane separation `! Note that, the above result for p = 0 gives

B = T0`0 which is consistent with the result in (3.14) for large brane separation. This

unusual result may indicate that the assumption that the transverse scalar fields of branes
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are fixed, i.e., no throat formation, is not a valid assumption. Or, it may indicates that the

form of the effective action is not given by the tachyon DBI action when branes separation

is larger than `c.

To find the geometrical picture of the bubble, we note that in the approximated solution

(3.15), inside the Euclidean sphere is filled with the true vacuum where the tachyon is

completely condensed and so the brane-anti-brane are disappeared. Outside the sphere,

on the other hand, is filled with the false vacuum where the tachyon does not condensed

and so the brane-anti-brane do exist. The geometrical picture of brane-anti-brane after

decay is then the original brane-anti-brane in which a spherical hole with radius (3.17) is

created at the center of each brane, see fig.4. The radius of the bubble is independent of

branes separation! These two holes may connect to each other by forming a throat [21, 6].

To study this throat formation, one has to release the assumption that the transverse

scalars of the brane are fixed, and find a solution which includes both tachyon and the

transverse scalar fields. In other words, one has to find a solution of the coupled equation

of motion of massless scalar and tachyon which represents both tachyon bounce and the

throat formation. One expects in this case that the radius of the hole depends on the

branes separation, the larger the branes separation, the larger the radius of the hole. We

leave this study for the future.
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P. Hořava, Type IIA D-branes, K-theory and matrix theory, Adv. Theor. Math. Phys. 2

(1999) 1373 [hep-th/9812135].

[14] A. Sen, Dirac-Born-Infeld action on the tachyon kink and vortex, Phys. Rev. D 68 (2003)

066008 [hep-th/0303057].

[15] M. Alishahiha, H. Ita and Y. Oz, On superconnections and the tachyon effective action, Phys.

Lett. B 503 (2001) 181 [hep-th/0012222];

N.D. Lambert and I. Sachs, Tachyon dynamics and the effective action approximation, Phys.

Rev. D 67 (2003) 026005 [hep-th/0208217];

Y. Kim, O.K. Kwon and C.O. Lee, Domain walls in noncommutative field theories, JHEP 01

(2005) 032 [hep-th/0411164].

[16] C.J. Kim, H.B. Kim, Y.B. Kim and O.K. Kwon, Electromagnetic string fluid in rolling

tachyon, JHEP 03 (2003) 008 [hep-th/0301076];

F. Leblond and A.W. Peet, SD-brane gravity fields and rolling tachyons, JHEP 04 (2003) 048

[hep-th/0303035].

[17] N. Lambert, H. Liu and J. Maldacena, Closed strings from decaying D-branes,

hep-th/0303139.

[18] A. Sen, Field theory of tachyon matter, Mod. Phys. Lett. A 17 (2002) 1797

[hep-th/0204143].

[19] A. Sen, Non-BPS states and branes in string theory, hep-th/9904207.

[20] I. Pesando, On the effective potential of the dp dp-bar system in type-II theories, Mod. Phys.

Lett. A 14 (1999) 1545 [hep-th/9902181];

N.T. Jones and S.H.H. Tye, An improved brane anti-brane action from boundary superstring

field theory and multi-vortex solutions, JHEP 01 (2003) 012 [hep-th/0211180].

[21] C.G. Callan Jr. and J.M. Maldacena, Brane dynamics from the Born-Infeld action, Nucl.

Phys. B 513 (1998) 198 [hep-th/9708147].

– 13 –

http://jhep.sissa.it/stdsearch?paper=05%282000%29009
http://xxx.lanl.gov/abs/hep-th/0003221
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C126003
http://xxx.lanl.gov/abs/hep-th/0004106
http://jhep.sissa.it/stdsearch?paper=05%282003%29058
http://xxx.lanl.gov/abs/hep-th/0304145
http://jhep.sissa.it/stdsearch?paper=12%282003%29036
http://jhep.sissa.it/stdsearch?paper=12%282003%29036
http://xxx.lanl.gov/abs/hep-th/0307197
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C106004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C106004
http://xxx.lanl.gov/abs/hep-th/0012198
http://jhep.sissa.it/stdsearch?paper=03%282001%29019
http://xxx.lanl.gov/abs/hep-th/0012210
http://jhep.sissa.it/stdsearch?paper=12%281998%29021
http://xxx.lanl.gov/abs/hep-th/9812031
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C1373
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C1373
http://xxx.lanl.gov/abs/hep-th/9812135
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C066008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C066008
http://xxx.lanl.gov/abs/hep-th/0303057
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB503%2C181
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB503%2C181
http://xxx.lanl.gov/abs/hep-th/0012222
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C026005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C026005
http://xxx.lanl.gov/abs/hep-th/0208217
http://jhep.sissa.it/stdsearch?paper=01%282005%29032
http://jhep.sissa.it/stdsearch?paper=01%282005%29032
http://xxx.lanl.gov/abs/hep-th/0411164
http://jhep.sissa.it/stdsearch?paper=03%282003%29008
http://xxx.lanl.gov/abs/hep-th/0301076
http://jhep.sissa.it/stdsearch?paper=04%282003%29048
http://xxx.lanl.gov/abs/hep-th/0303035
http://xxx.lanl.gov/abs/hep-th/0303139
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA17%2C1797
http://xxx.lanl.gov/abs/hep-th/0204143
http://xxx.lanl.gov/abs/hep-th/9904207
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA14%2C1545
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=MPLAE%2CA14%2C1545
http://xxx.lanl.gov/abs/hep-th/9902181
http://jhep.sissa.it/stdsearch?paper=01%282003%29012
http://xxx.lanl.gov/abs/hep-th/0211180
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB513%2C198
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB513%2C198
http://xxx.lanl.gov/abs/hep-th/9708147

